<u>Properties of exponents</u> are rules used to create equivalent expressions.

<u>Properties of exponents</u> can <u>only</u> be used when exponential expressions have the

same base.

$\frac{\text{Multiplying}}{3^2 \times 3^5}$	Keep the <u>base,</u> add the exponents .	$3^2 \times 3^5 = 3^{2+5}$
<u>Dividing</u> <u>4⁶</u> 4 ³	Keep the <u>base,</u> subtract the exponents.	$\frac{4^6}{4^3} = 4^{6-3}$
Raising to an Exponent (5 ⁴) ³	Keep the <u>base,</u> multiply the exponents.	$(5^4)^3 = 5^{4 \times 3}$

Exponent rules **CANNOT** be used on the following exponential expressions:

$$5^2 \times 4^3$$

CFU

For which of the following exponential expressions can a property of exponents be used? How do you know?

- $A 3^4 \times 2^4$
- $8 4^3 \times 4^2$

How do you know a property of exponents CANNOT be used on the other exponential expression?

What is the difference between the property of exponents for Multiplying and Dividing?

- 1. Identify exponential expressions with the same base.
- 2. Determine which property of exponents to apply. Hint: Look at the operation.
- 3. Create an equivalent expression using properties of exponents.
- 4. Interpret the exponential expression. " ____ is equivalent to ____."

Keep the <u>base</u>, add the exponents

$$3^2 \times 3^5 = 3^{2+5}$$

Dividing

Keep the <u>base</u>, **subtract** the **exponents**

$$\frac{4^6}{4^3} = 4^{6-3}$$

Raising to an Exponent

Keep the <u>base</u>, multiply the exponents

$$(5^4)^3 = 5^4 \times 3$$

1.
$$2^2 \times 2^4$$

$$2. \ 3^2 \times 3^3$$

3.
$$\frac{6^7}{6^4}$$

$$\frac{4^3 \times 4^2}{3^5}$$

6.
$$2^2 \times 2^3$$

7.
$$3^2 \times 4^7$$

8.
$$2^2 \times 5^8$$

 5^7

<u>Properties of exponents</u> are rules used to create equivalent expressions.

<u>Properties of exponents</u> can <u>only</u> be used when exponential expressions have the

same base.

$\frac{\text{Multiplying}}{3^2 \times 3^5}$	Keep the <u>base,</u> add the exponents .	$3^2 \times 3^5 = 3^{2+5}$
<u>Dividing</u> <u>4⁶</u> 4 ³	Keep the <u>base,</u> subtract the exponents.	$\frac{4^6}{4^3} = 4^{6-3}$
Raising to an Exponent (5 ⁴) ³	Keep the <u>base,</u> multiply the exponents.	$(5^4)^3 = 5^{4 \times 3}$

Exponent rules **CANNOT** be used on the following exponential expressions:

$$5^2 \times 4^3$$
 $\frac{3^4}{4^3}$

CFU

Which of the following shows the property of exponents correctly used for the expression $(4^3)^2$?

- A 43 + 2
- B 43 × 2
- **4**3 2

- 1. Identify exponential expressions with the same base.
- 2. Determine which property of exponents to apply. Hint: Look at the operation.
- Create an equivalent expression using properties of exponents.
 Interpret the exponential expression. " ____ is equivalent to ____."

Multiplying	<u>Dividing</u>	Raising to an Exponent
Keep the <u>base</u> , add the exponents	Keep the <u>base</u> , subtract the exponents	Keep the <u>base,</u> multiply the exponents
$3^2 \times 3^5 = 3^{2+5}$	$\frac{4^6}{4^3} = 4^{6-3}$	$(5^4)^3 = 5^{4 \times 3}$

1.
$$(3^3)^2$$
 2. $(5^2)^2$

3.
$$(2^4)^2 \times 2^2$$
4. $(3^2)^2 \times 3^3$

<u>Properties of exponents</u> are rules used to create equivalent expressions.

Properties of exponents can only be used when exponential expressions have the

same base.

Raising to a Zero Exponent 70	Any <u>base</u> raised to a zero exponent is 1.	7 ⁰ = 1
Raising to a Negative Exponent 6-3	Write the expression as a fraction, move the expression to the denominator and change to a positive exponent.	$\frac{6^{-3}}{1} = \frac{1}{6^3}$
<u>1</u> 6 ⁻³	Move the expression to the numerator and change to a positive exponent.	$\frac{1}{6^{-3}} = \frac{6^{3}}{1} = 6^{3}$

CFU

On your whiteboards, write an exponential expression that is equivalent to 1.

Which of the following is equal to 3-2? How do you know?

Which of the following is equal to ? How do you know?

A

B

$$\frac{1}{6^{5}}$$

C

- 1. Identify exponential expressions with the same base.
- 2. Determine which property of exponents to apply. Hint: Look at the operation.
- 3. Create an equivalent expression using properties of exponents.
- 4. Interpret the exponential expression. " ____ is equivalent to ____."

	<u>Raising</u>	to	a	Zero	Exp	onent
--	----------------	----	---	------	-----	-------

Any <u>base</u> raised to a zero exponent is 1.

$$7^0 = 1$$

Raising to a Negative Exponent

$$\frac{6^{-3}}{1} = \frac{1}{6^3} \qquad \frac{1}{6^3} = 6^3$$

7. Match equivalent exponential expressions.

$$\frac{7^2}{7^{-2}}$$

$$(3^2)^2$$

$$(4^5)^2 \times 4^{-7}$$

$$3^5 \times 3^2$$

$$3^3 \times 3$$

$$4^2 \times 4^5$$

$$7^2 \times 7$$

 $(4^2)^2 \times 4^3$

$$\frac{7^5}{7^2}$$

$$(7^2)^2$$

8. Match equivalent exponential expressions.

$$6^{3} \times 6^{2}$$

$$(5^3)^2$$

$$(3^3)^2$$

$$\frac{5^5 \times 5^5}{5^7}$$

$$(3^3)^2 \times 3^{-1}$$

$$\frac{3^3}{3^{-3}}$$

$$5^6 \times 5^{-3}$$

$$6^5 \times 6^{-2}$$

$$(5^2)^3$$

$$3^3 \times 3^2$$

Skill Closure

- 1. Identify exponential expressions with the same base.
- 2. Determine which property of exponents to apply. Hint: Look at the operation.
- 3. Create an equivalent expression using properties of exponents.
- 4. Interpret the exponential expression. " ____ is equivalent to ____."

<u>Multiplying</u>			
Keep the base,			
add the exponents			
$3^2 \times 3^5 = 3^{2+5}$			

Raising to an Exponent Keep the base, multiply the exponents

 $(5^4)^3 = 5^4 \times 3$

$$\frac{6^{-3}}{1} = \frac{1}{6^3} \qquad \frac{1}{6^3} = 6^3$$

1.
$$4^3 \times 4^2$$

Concept Closure

Caroline made a mistake applying the properties of exponents. Explain the error she made.

$$\frac{4^8}{2^5} = 2^{8-5} = 2^3$$

Closure

What did you learn today about applying properties of exponents?

Word Bank

exponents properties raising zero negative

- 1. Identify exponential expressions with the same base.
- 2. Determine which property of exponents to apply. Hint: Look at the operation.
- 3. Create an equivalent expression using properties of exponents.
- 4. Interpret the exponential expression. " ____ is equivalent to ____."

<u>Multiplying</u>				
Keep the base,				
add the exponents				
$3^2 \times 3^5 = 3^{2+5}$				

Dividing

Keep the base,
subtract the exponents
$$\frac{4^{6}}{3} = 4^{6-3}$$

 $(5^4)^3 = 5^4 \times 3$

Raising to a Zero Exponent

Any base raised to a zero exponent is 1.

$$7^0 = 1$$

Raising to a Negative

Exponent
$$\frac{6^{-3}}{1} = \frac{1}{6^3} \qquad \frac{1}{6^3} = 6^3$$

1.
$$5^2 \times 5^2$$

3.
$$2^2 \times 2^2 \over 5^2$$

4.
$$\frac{4^2 \times 6^9}{6^7}$$

6.
$$(2^2)^3 \times 2$$

Keep the <u>base</u>, add the exponents $3^2 \times 3^5 = 3^{2+5}$

Dividing

Keep the base, subtract the exponents $\frac{4^{6}}{4^{2}} = 4^{6-3}$

Raising to an Exponent

Keep the <u>base</u>, multiply the exponents $(5^4)^3 = 5^4 \times 3$

Raising to a Zero Exponent

Any <u>base</u> raised to a zero exponent is 1.

Raising to a Negative Exponent

$$\frac{6^{-3}}{1} = \frac{1}{6^3} \qquad \frac{1}{6^3} = 6^3$$

Create an equivalent expression using properties of exponents.

2. $6^5 \times 6^4$

3.
$$(2^3)^2 \times 5^2$$

4. <u>4</u>5

6. (3²)-²

For each exponential expression, mark whether it is greater than or less than 34.

1.
$$3^2 \times 3$$

- 2. $\frac{(3^5)^2}{3^{10}}$
- 3. $\frac{3^3}{3^{-4}}$
- **4.** (4²)²
- **5.** $\frac{3^2 \times 3^5}{3^{12}}$
- 6. $\frac{1}{3^{-6}}$

Greater than 34	Less than 3 ⁴

Keep the base, add the exponents $3^2 \times 3^5 = 3^{2+5}$

Dividing

Keep the base, subtract the exponents = 46 - 3

Raising to an Exponent

Keep the base, multiply the exponents

$$(5^4)^3 = 5^4 \times 3$$

Raising to a Zero Exponent

Any base raised to a zero exponentis 1.

$$7^0 = 1$$

Raising to a Negative Exponent

$$\frac{6^{-3}}{1} = \frac{1}{6^3}$$
 $\frac{1}{6^3} = 6^3$

Create an equivalent expression using properties of exponents.

$$(9^3)^0 \times 2^3$$

$$\frac{4^{2}}{4^{-1}}$$

Correct the error made in applying the properties of exponents. Then describe the error made.

1a
$$6^4 \times 6^5 = 6^{4 \times 5} = 6^{20}$$
 1b $7^3 \times 7^2 = 7^3 \times 2 = 7^6$

1b.
$$7^3 \times 7^2 = 7^3 \times 2 = 7^6$$

1c.
$$2^5 \times 2^3 = 2^{5 \times 3} = 2^{15}$$

Correct the error made in applying the properties of exponents. Then describe the error made.

2a.
$$3^2 \times 2^3 = 6^{2+3} = 6^5$$

$$2a. 3^2 \times 2^3 = 6^{2+3} = 6^5$$
 $2b. 5^2 \times 5^2 = 25^{2+2} = 25^4$ $2c. 4^3 \times 3^1 = 12^{3+1} = 12^4$

$$2c. 4^3 \times 3^1 = 12^{3+1} = 12^4$$

7. Correct the error made in applying the properties of exponents. Then describe the error made.

3a.
$$\frac{10^6}{5^3} = 2^{6-3} = 2^3$$

3b.
$$\frac{9^8}{3^6} = 3^{8-6} = 3^2$$

3c.
$$\frac{12^9}{3^5} = 4^{9-5} = 4^4$$

Correct the error made in applying the properties of exponents. Then describe the error made.

4a.
$$\frac{7^6}{7^3} = 76 \div 3 = 72$$

4b.
$$\frac{5^{10}}{5^2} = 5^{10} \div 2 = 5^5$$

4c.
$$\frac{3^8}{3^2} = 3^8 \div 2 = 3^4$$

Keep the base, add the exponents $3^2 \times 3^5 = 3^{2+5}$

Dividing

Keep the base, subtract the exponents =46-3

Raising to an Exponent

Keep the base, multiply the exponents $(5^4)^3 = 5^4 \times 3$

Raising to a Zero Exponent Any base raised to a zero exponentis 1.

$$7^0 = 1$$

Raising to a Negative **Exponent**

$$\frac{6^{-3}}{1} = \frac{1}{6^3}$$
 $\frac{1}{6^3} = 6$

Create an equivalent expression using properties of exponents.

1.

2.

$$0^5 \times 10^6$$

1. Choose Yes or No to indicate whether each expression is equivalent to 5^3

 \times 5⁻⁴.

A
$$\frac{5^3}{5^4}$$

5-12 В

53 + (-4) \Box

O Yes O No

O Yes O No

O Yes O No

O Yes O No

2. Choose Yes or No to indicate whether each expression is equivalent to

A
$$3^8 \times 3^{-5}$$

33 В

C $\frac{1}{27}$

38 + (-5) \Box

- O Yes O No
- Choose Yes or No to indicate whether each expression is equivalent to

$$(4^2)^{-1}$$
.

A
$$\frac{1}{4^2}$$

 $C 4^4 \times 4^{-6}$

D 16

- O Yes O No
- O Yes O No
- O Yes O No
- O Yes O No