A <u>rational number</u> is **any number** that can be written as a ratio or fraction.

An **irrational number** cannot be written as a **ratio or fraction** because they are non-terminating, non-repeating decimals.

Rational Numbers			Irrational Numbers
Integers (not fractions)	Terminating Decimals	Repeating Decimals	Decimals with digits that go indefinitely without repeating
$3 = \frac{3}{1}$	$1.4 = \frac{7}{5}$	$0.\overline{3} = \frac{1}{3}$	$\sqrt{2}$ = 1.4142
$\sqrt{4} = \frac{2}{1}$	$-1.5 = \frac{-3}{2}$	$0.\overline{123} = \frac{41}{333}$	π = 3.14159
$5^2 = \frac{25}{1}$	$3.79 = \frac{379}{100}$	$-0.\overline{18} = \frac{-2}{11}$	π = 3.1415926 535897932384 62640
$0 = \frac{3}{1}$ $-12 = \frac{-12}{1}$	All terminating decimals are rational	All repeating decimals are rational	

CFU

Select one or more rational numbers that are integers. Explain.

A √16

 $\frac{5}{0}$

C 5,020

D -77

Select one or more rational numbers that are terminating decimals. Explain.

A 1.5

- **B** 2.666...
- C -10.5

D 0.25

- 1 If possible, write the number as a fraction in simplest form.
- 2 Classify the number as **rational** or **irrational**. If it is rational, classify it as an **integer**, a **terminating decimal**, or a **repeating decimal**.
- **3** Interpret the answer. (" ___ is ___ because...")

1.		2.	
	4		7

3. -11 -9

 $\frac{10}{5}$ 6. $\frac{18}{6}$

7. ₇ 8. ₈

 7.
 7/6

 8.
 8/5

- 1 If possible, write the number as a fraction in simplest form.
- 2 Classify the number as **rational** or **irrational**. If it is rational, classify it as an **integer**, a **terminating decimal**, or a **repeating decimal**.
- **3** Interpret the answer. (" is because...")

9.	0.62	10.	-2.18

13.
$$\sqrt{25}$$
 14. $\sqrt{9}$

15.
$$\sqrt{3} = 1.73205080...$$
 16. $\sqrt{5} = 2.2360679775...$

Skill Closure

- 1 If possible, write the number as a fraction in simplest form.
- 2 Classify the number as **rational** or **irrational**. If it is rational, classify it as an **integer**, a **terminating decimal**, or a **repeating decimal**.
- 3 Interpret the answer. (" ___ is ___ because...")

1.	17	-17
	-17	1

$$\frac{100}{25} = \frac{4}{1}$$

$$0.\overline{2} = \frac{2}{9}$$

$$0.241 = \frac{241}{1000}$$

Concept Closure

Read and solve the problem.

Quinton classified $\sqrt{15}$ as a rational number and an integer. Is he correct? Explain.

$$\sqrt{15}$$
 = 3.87298334621...

Summary Closure

What did you learn today about distinguishing between rational and irrational numbers?

rational ratio irrational integer terminating decimal repeating decimal

Word Bank

fraction

- 1 If possible, write the number as a fraction in simplest form.
- 2 Classify the number as **rational** or **irrational**. If it is rational, classify it as an **integer**, a **terminating decimal**, or a **repeating decimal**.
- **3** Interpret the answer. (" is because...")

1.

2.

-4

3.

-16

4.

50

5.

 $\frac{32}{4}$

6.

 $\frac{11}{3} = 3.\overline{6}$

7.

 $\frac{12}{9} = 1.\overline{3}$

8.

3

- 1 If possible, write the number as a fraction in simplest form.
- 2 Classify the number as **rational** or **irrational**. If it is rational, classify it as an **integer**, a **terminating decimal**, or a **repeating decimal**.
- **3** Interpret the answer. (" is because...")

9. $-0.28 = \frac{-28}{100} = \frac{-7}{25}$

10.

 $1.\overline{7} = \frac{16}{9}$

11.

$$0.\overline{79} = \frac{79}{99}$$

12.

$$4.51 = \frac{451}{100}$$

13.

$$\sqrt{11}$$
 = 3.31662479...

14.

$$\sqrt{144}$$

15.

$$\sqrt{81}$$

16.

$$\sqrt{15}$$
 = 3.872983...

Classify numbers as rational or irrational.

If rational, classify as integer, terminating decimal, or repeating decimal.

1. -31 2.

60 6

3.

$$\frac{47}{5}$$
 = 9.4

4.

$$\frac{2}{3} = 0.66\overline{6}$$

5.

$$\sqrt{169} = \frac{13}{1}$$

6.

$$\sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2}$$

7.

8.

Choose Yes or No to indicate whether each statement about rational numbers is true or false.

All rational numbers can be written as a ratio of two integers.

O Yes O No

All rational numbers are integers.

O Yes O No

All whole numbers are rational numbers.

O Yes O No

The number -37.5 is a rational number.

O Yes O No

Classify numbers as rational or irrational.

If rational, classify as integer, terminating decimal, or repeating decimal.

1. **-44**

2. 3.27

3.

$$\frac{15}{5}$$
 = 3.75

4.

$$\sqrt{90} = 3 \times \sqrt{10}$$

5.

$$\sqrt{78}$$
 = 8.831...

6.

$$\sqrt{400} = 20$$

7.

$$\sqrt{2}$$

8.

Choose Yes or No to indicate whether each statement about rational numbers is true or false.

All integers are rational numbers.

O Yes O No

All fractions are rational numbers.

O Yes O No

All repeating decimals are rational.

O Yes O No

The number $\sqrt{2}$ is rational.

O Yes O No

Classify numbers as rational or irrational.

If rational, classify as integer, terminating decimal, or repeating decimal.

1.
$$\sqrt{144} = 12$$

2.
$$\sqrt{46} = 6.7823...$$

4.
$$\frac{33}{10} = 3.3$$

5.
$$\frac{100}{25} = 4$$

6.
$$\sqrt{101}$$

Choose Yes or No to indicate whether each statement about irrational numbers is true or false.

Irrational numbers cannot be written as a ratio of two integers.

O Yes O No

All irrational numbers are fractions.

O Yes O No

All numbers are irrational numbers.

O Yes O No

The number $\sqrt{100}$ is an irrational number.

O Yes O No