Special forms of quadratic functions reveal ordered pair locations of key parabola points.

Standard Form $f(x)=a x^{2}+b x+c$ y-intercept ($0, ~ c$)	Factored Form $\begin{gathered} f(x)=a(x-m)(x-n) \\ x \text {-intercepts } \\ (m, 0) \&(n, 0) \end{gathered}$	Vertex Form $f(x)=a(x-h)^{2}+\mathbf{k}$ Vertex (h, k)
Note: Values in parentheses come out as opposites.		
$f(x)=-2 x^{2}+4 x+6 \quad$		
y-intercept (0,6)		
$f(x)=-2(x+1)(x-3)$		
x-intercepts $(-1,0) \&(3,0)$		
$f(x)=-2(x-1)^{2}+8$		$(3,0)$
Vertex (1,8)		

CFU

Which quadratic function has a y-intercept at (0, -7)? Explain.
(A) $f(x)=x^{2}-6 x-7$
(B) $f(x)=(x+6)^{2}-7$
(C) $f(x)=(x+6)(x-7)$

Which quadratic function has \mathbf{x}-intercepts at $(5,0)$ and $(-8,0)$? Explain.
(A) $f(x)=5(x-5)^{2}-8$
(B) $f(x)=5 x^{2}+5 x-8$
(C) $f(x)=5(x-5)(x+8)$

Which quadratic function has a vertex location (-4, 10)? Explain.
$\begin{aligned} \text { (A) } f(x) & =-3(x-4)^{2}+10 \\ \text { (B) } f(x) & =-2(x+4)(x-10) \\ \text { (C) } f(x) & =(x+4)^{2}+10\end{aligned}$

1 Identify the y-intercept from the standard form.
2 Identify the x-intercepts from the factored form.
3 Identify the vertex from the vertex form.
4 Plot the points and sketch the graph.

1. $f(x)=-2(x+1)(x+7)$

$$
f(x)=-2 x^{2}-16 x-14
$$

$$
f(x)=-2(x+4)^{2}+18
$$

maximum or minimum

1 Identify the y-intercept from the standard form.
2 Identify the x-intercepts from the factored form.
3 Identify the vertex from the vertex form.
4 Plot the points and sketch the graph.
2. $f(x)=(x-3)^{2}-4$

$$
f(x)=(x-5)(x-1)
$$

$$
f(x)=x^{2}-6 x+5
$$

y-intercept	x	$f(x)$
x-intercepts		
vertex		

maximum or minimum

Skill Closure

1 Identify the y-intercept from the standard form.
2 Identify the x-intercepts from the factored form.
3 Identify the vertex from the vertex form.
4 Plot the points and sketch the graph.
1.

$$
\begin{aligned}
& f(x)=(x+2)(x-4) \\
& f(x)=x^{2}-2 x-8 \\
& f(x)=(x-1)^{2}-9
\end{aligned}
$$

y-intercept	x	$\mathrm{f}(\mathrm{x})$
x-intercepts		
vertex		

maximum or minimum

Concept Closure

If there is an error in the table, identify and explain it. If not, select "No errors were made."

$$
\begin{aligned}
& f(x)=-3 x^{2}+18 x-15 \\
& f(x)=-3(x-1)(x-5) \\
& f(x)=-3(x-3)^{2}+12
\end{aligned}
$$

	x	$f(x)$
y-intercept	0	-15
x-intercepts -	1	0
	-5	0
	3	12

No errors were made.

Standard Form $f(x)=a x^{2}+b x+c$ y-intercept ($0, ~ c$)

Factored Form $f(x)=a(x-m)(x-n)$
x-intercepts
$(m, 0) \&(n, 0)$
Vertex Form
$f(x)=a(x-h)^{2}+k$ Vertex
(h, k)

1 Identify the y-intercept from the standard form.
2 Identify the x-intercepts from the factored form.
3 Identify the vertex from the vertex form.
4 Plot the points and sketch the graph.

1. $f(x)=3(x+1)^{2}-12$

$$
f(x)=3(x+3)(x-1)
$$

$$
f(x)=3 x^{2}+6 x-9
$$

y-intercept	x	$f(x)$
x-intercepts		
vertex		

maximum or minimum
2. $f(x)=-(x-3)(x-5)$

$$
f(x)=-x^{2}+8 x-15
$$

$$
f(x)=-(x-4)^{2}+1
$$

y-intercept	X	$f(x)$
x-intercepts		
vertex		

Find key parabola points and graph them.
1.

$$
\begin{aligned}
& f(x)=-5(x+3)(x+1) \\
& f(x)=-5 x^{2}-20 x-15 \\
& f(x)=-5(x+2)^{2}+5
\end{aligned}
$$

y-intercept	x	$\mathrm{f}(\mathrm{x})$
x-intercepts		
vertex		

maximum or minimum
2.

$$
\begin{aligned}
& f(x)=4(x-2)^{2}-4 \\
& f(x)=4(x-1)(x-3) \\
& f(x)=4 x^{2}-16 x+12
\end{aligned}
$$

y-intercept	X	$\mathrm{f}(\mathrm{x})$
x-intercepts		
vertex		

maximum or minimum

If there is an error in the table, identify and explain it. If not, select "No errors were made."
3.

$$
\begin{aligned}
& f(x)=x^{2}+10 x+16 \\
& f(x)=(x+2)(x+8) \\
& f(x)=(x+5)^{2}-9
\end{aligned}
$$

y-intercept	x	$f(x)$
	0	16
	-2	0
x-intercepis	-8	0
vertex	5	9

No errors were made.

Find key parabola points and graph them.
1.

$$
\begin{aligned}
& f(x)=-2(x-4)(x-2) \\
& f(x)=-2 x^{2}+12 x-16 \\
& f(x)=-2(x-3)^{2}+2
\end{aligned}
$$

y-intercept	x	$f(x)$
x-intercepts		
vertex		

maximum or minimum
2.

$$
\begin{aligned}
& f(x)=-(x+8)(x+2) \\
& f(x)=-x^{2}-10 x-16 \\
& f(x)=-(x+5)^{2}+9
\end{aligned}
$$

y-intercept	X	$\mathrm{f}(\mathrm{x})$
x-intercepts		
vertex		

maximum or minimum

If there is an error in the table, identify and explain it. If not, select "No errors were made."
3.

$$
\begin{aligned}
& f(x)=-2 x^{2}-8 x+42 \\
& f(x)=-2(x-3)(x+7) \\
& f(x)=-2(x+2)^{2}+50
\end{aligned}
$$

	x	$f(x)$
	y-intercept	0
x-intercepts	-2	
	-2	0
	-8	0
	5	9

No errors were made.

Find key parabola points and graph them.
1.

$$
\begin{aligned}
& f(x)=(x-5)^{2}-16 \\
& f(x)=(x-1)(x-9) \\
& f(x)=x^{2}-10 x+9
\end{aligned}
$$

maximum or minimum
2.

$$
\begin{aligned}
& f(x)=2(x+3)^{2}-18 \\
& f(x)=2(x+6)(x+0) \\
& f(x)=2 x^{2}+12 x
\end{aligned}
$$

y-intercept	X	$f(x)$
x-intercepts		
vertex		

maximum or minimum

If there is an error in the table, identify and explain it. If not, select "No errors were made."
3.

$$
\begin{aligned}
& f(x)=x^{2}-12 x+27 \\
& f(x)=(x-3)(x-9) \\
& f(x)=(x-6)^{2}-9
\end{aligned}
$$

y-intercept	X	f(x)
	0	16
x-intercepts	-2	0
	-8	0
vertex	5	9

