Properties of exponents are rules used to create equivalent expressions.

▶ Properties of exponents can only be used when exponential expressions have the same base.

Multiplying	Keep the base, add the exponents. $q^m \cdot q^n = q^{(m+n)}$	$n^2 \cdot n^5 = n^{2+5} = n^7$
Dividing	Keep the base, subtract the exponents. $\frac{a^m}{a^n} = a^{(m-n)}$	$\frac{n^6}{n^3} = n^{6-3} = n^3$

Exponential rules CANNOT be used: $a^2 \cdot b^3$, $\frac{m^4}{n^3}$

CFU

Which exponential expression can use an exponential rule? Explain.

- $B \quad a^2 \cdot a^3$

Which exponential expression can use an exponential rule? Explain.

- $A \frac{b^8}{b^5}$
- $\frac{a^5}{b^2}$

- 1 Determine which property of exponents to use.
- 2 Create an equivalent expression using properties of exponents.
- 3 Interpret the expression. " simplifies to

1.	n² ∙	n ⁴
----	------	----------------

$$a^2 \cdot a^3$$

3.

 $\frac{\alpha^3 \bullet \alpha^2}{n^5}$ **5**.

7. $\frac{n^2 \bullet a^7}{a^5}$

8.
$$\frac{\mathbf{c}^2 \cdot \mathbf{n}^8}{\mathbf{n}^7}$$

educeri.com

Properties of exponents are rules used to create equivalent expressions.

▶ Properties of exponents can only be used when exponential expressions have the same base.

Raising to an Exponent	Keep the base, multiply the exponents.	$(b^4)^3 = b^{(4 \cdot 3)} = b^{12}$
Negative Exponent	Invert the base to change the negative exponent into a positive. $a^{-n} = \frac{1}{a^n}$	$\frac{b^{-3}}{1} = \frac{1}{b^3} \frac{b^3}{1} = \frac{1}{b^{-3}}$
Rational Exponent	When the exponent is a fraction, the numerator is the power and the denominator is the root. $\frac{m}{n} = \sqrt{n}$	$\mathbf{c}^{\frac{2}{3}} = \sqrt[3]{\mathbf{c}^2}$

For which exponential expression can you use the raising to an exponent rule? Explain.

- A a4 a2
- B (a4)2

For which exponential expression do you need to use the rational exponent rule? Explain.

- $A (a^3)^4$
- B a 2

- 1 Determine which property of exponents to use.
- 2 Create an equivalent expression using properties of exponents.
- 3 Interpret the expression. " ____ simplifies to ____.
- $(x^3)^4$ 9.
- 10. $(m^2)^3$

- $(5n^4)^2$
- **12**.
 - $(4c^7)^2$

- n-4
- 14.
- †-5

15. $\overline{\mathbf{m}^{\text{-12}}}$

11.

13.

16.

- **17**.
 - $b^{\,\overline{2}}$

18. $m^{\, \overline{3}}$

20.

- 19.

 - † ⁵

Skill Closure

- 1 Determine which property of exponents to use.
- 2 Create an equivalent expression using properties of exponents.
- **3** Interpret the expression. " simplifies to ."

1.	a³ • a²	2.	(w³)²	3.	p ⁻⁴

Concept Closure

Caroline made a mistake applying the properties of exponents. Explain the error she made.

$$\frac{a^8}{b^5} = a^{8-5} = a^3$$

Summary Closure

What did you learn today about simplifying expressions using exponential rules?

Word Bank

exponents properties multiply divide power negative

- 1 Determine which property of exponents to use.
- 2 Create an equivalent expression using properties of exponents.
- 3 Interpret the expression. " ____ simplifies to ____."
- $V^2 \cdot V^2$ 1. 2.
 - $\frac{q^5}{q^2}$

 $\frac{n^2 \bullet n^2}{m^2}$ 3.

4. $\frac{a^2 \cdot b^9}{b^7}$

5. $(p^2)^4$

6. (n²)³• n

7. y⁻²

 $(r^4)^2 \cdot r^2$ 8.

9.

11.

- s $\frac{1}{2}$
- **12**.

† ²/₅

10.

Simplify expressions with positive exponents.

1.	(f ²) ⁶ f ¹¹	2.	$\frac{z^5 \cdot z^4}{z^{11}}$
3.	(u ⁵) ² • y ²	4.	(n ²) ⁻²
5 .	4	6.	(d²)⁴ • d³

For each exponential expression, mark whether it is greater than or less than n⁴.

	Greater than n ⁴	Less than n ⁴
1. n² • n		
2. $\frac{(n^5)^2}{n^9}$		
3. $\frac{n^3}{n^{-4}}$		
4. (n²)¹		
5. $\frac{n^2 \cdot n^5}{n^{12}}$		
6. \frac{1}{n^{-6}}		

Describe the error made in simplifying exponential expressions.

1.
$$a^4 \cdot a^5 = a^{4 \cdot 5} = a^{20}$$

$$n^3 \cdot n^2 = n^3 \cdot 2 = n^6$$

2.
$$p^2 \cdot m^3 = p^{2+3} = p^5$$

$$a^3 \cdot b^1 = a^{3+1} = a^4$$

Select Yes or No to indicate whether the expression simplifies to n^{10} .

A.
$$\frac{n^{15}}{5}$$

O Yes O No

B.
$$n^2 \cdot n^5$$

O Yes O No

O Yes O No

D.
$$\frac{1}{n^{-4} \cdot n^{-6}}$$

O Yes O No

Select Yes or No to indicate whether the expression simplifies to y⁻⁴.

A.
$$(y^{-4})^2 \cdot y^4$$

O Yes O No

$$B. \qquad \frac{1}{y^{-3} \cdot y^{-1}}$$

O Yes O No

O Yes O No

$$D. \qquad \frac{y^{-1}}{y^5}$$

O Yes O No

Describe the error made in simplifying exponential expressions.

1.
$$(n^{-4})^2 \cdot n^4 = n^{-4+2} \cdot n^4$$

= n^{-2+4}
= n^2

$$\frac{2.}{p^{-3}} = p^5$$

$$\frac{q^{-2}}{q^{-3}} = q^5$$

Select Yes or No to indicate whether the expression simplifies to z^2 .

$$A$$
. $z^1 \cdot z^1$

B.
$$\frac{z^{-2} \cdot z^{-1}}{z^{-3} \cdot z^{-2}}$$

C.
$$\frac{z^{-5}}{z^3}$$

D.
$$(z^2)^2 \cdot z^{-2}$$

Select Yes or No to indicate whether the expression simplifies to a^{12} .

B.
$$\frac{1}{a^{-11} \cdot a^{-1}}$$

C.
$$(a^7)^2 \cdot a^{-2}$$

$$D. \qquad \frac{a^{12}}{a^{-2}}$$