Properties of exponents are rules used to create equivalent expressions.

- Properties of exponents can only be used when exponential expressions have the same base.

Multiplying	Keep the base, add the exponents. $a^{m} \cdot a^{n}=a^{(m+n)}$	$\mathbf{n}^{2} \cdot \mathbf{n}^{5}=\mathrm{n}^{\mathbf{2}+5}=\mathbf{n}^{\mathbf{7}}$
Dividing	Keep the base, subtract the exponents. $\frac{a^{m}}{a^{n}}=a^{(m-n)}$	$\frac{n^{6}}{n^{3}}=n^{6-3}=n^{3}$

Exponential rules CANNOT be used: $\boldsymbol{a}^{2} \cdot b^{3}, \frac{\mathbf{m}^{4}}{\mathbf{n}^{3}}$

CFU

Which exponential expression can use an exponential rule? Explain.

\bigcirc| $n^{2} \cdot 2^{3}$ |
| :--- |
| $a^{2} \cdot a^{3}$ |

Which exponential expression can use an exponential rule? Explain.
$\frac{b^{8}}{b^{5}}$
$\frac{a^{5}}{b^{2}}$

1 Determine which property of exponents to use.
2 Create an equivalent expression using properties of exponents.
3 Interpret the expression. \qquad

Properties of exponents are rules used to create equivalent expressions.

- Properties of exponents can only be used when exponential expressions have the same base.

Raising to an Exponent	Keep the base, multiply the exponents. $\left(a^{m}\right)^{n}=a^{(m \bullet n)}$	$\left(b^{4}\right)^{3}=b^{(4 \cdot 3)}=b^{12}$
Negative Exponent	Invert the base to change the negative exponent into a positive. $a^{-n}=\frac{1}{a^{n}}$	$\frac{b^{-3}}{1}=\frac{1}{b^{3}} \quad \frac{b^{3}}{1}=\frac{1}{b^{-3}}$
Rational Exponent	When the exponent is a fraction, the numerator is the power and the denominator is the root. $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}$	$c^{\frac{2}{3}}=\sqrt[3]{c^{2}}$

2 CFU

For which exponential expression can you use the raising to an exponent rule? Explain.
$a^{4} \cdot a^{2}$
$\bigcirc\left(a^{4}\right)^{2}$

For which exponential expression do you need to use the rational exponent rule? Explain.
$\left(a^{3}\right)^{4}$

- $a^{\frac{3}{4}}$

1 Determine which property of exponents to use.
2 Create an equivalent expression using properties of exponents.
3 Interpret the expression. \qquad

	$\left(x^{3}\right)^{4}$	10.	$\left(m^{2}\right)^{3}$
11.	$\left(5 n^{4}\right)^{2}$	12.	$\left(4 c^{7}\right)^{2}$
13.	n^{-4}	14.	t^{-5}
	$\frac{1}{m^{-12}}$		$\frac{1}{c^{-9}}$
	$b^{\frac{1}{2}}$		$m^{\frac{2}{3}}$
	$t^{\frac{2}{5}}$		$q^{\frac{1}{7}}$

Skill Closure

1 Determine which property of exponents to use.
2 Create an equivalent expression using properties of exponents.
3 Interpret the expression. simplifies to

1. $a^{3} \cdot a^{2}$
2. $\left(w^{3}\right)^{2}$
3. p^{-4}

Concept Closure

Caroline made a mistake applying the properties of exponents. Explain the error she made.

$$
\frac{a^{8}}{b^{5}}=a^{8-5}=a^{3}
$$

Summary Closure

What did you learn today about simplifying expressions using exponential rules?
Word Bank
exponents properties multiply divide power negative

1 Determine which property of exponents to use.
2 Create an equivalent expression using properties of exponents.
3 Interpret the expression. \qquad

| 1. $v^{2} \cdot v^{2}$ |
| :--- | :--- |
| 3. $\frac{n^{2} \cdot n^{2}}{m^{2}}$ |

4. $\quad \frac{a^{2} \cdot b^{9}}{b^{7}}$
5. $\quad\left(n^{2}\right)^{3} \cdot n$
6. y^{-2}
7. $\quad\left(r^{4}\right)^{2} \cdot r^{2}$
8. $s^{\frac{1}{2}}$
9. $\frac{1}{w^{-12}}$

Simplify expressions with positive exponents.

1.	$\frac{\left(f^{2}\right)^{6}}{f^{11}}$	2.	$\frac{z^{5} \cdot z^{4}}{z^{11}}$
3.	$\left(u^{5}\right)^{2} \cdot y^{2}$	4.	$\left(n^{2}\right)^{-2}$
5.	$w^{\frac{4}{5}}$	6.	$\left(d^{2}\right)^{4} \cdot d^{3}$

For each exponential expression, mark whether it is greater than or less than n^{4}.

		Greater than n^{4}
1.	$n^{2} \cdot n$	
2.	$\frac{\left(n^{5}\right)^{2}}{n^{9}}$	
3.	$\frac{n^{3}}{n^{-4}}$	
4.	$\left(n^{2}\right)^{1}$	
5.	$\frac{n^{2} \cdot n^{5}}{n^{12}}$	
6.	$\frac{1}{n^{-6}}$	

Describe the error made in simplifying exponential expressions.
1.

$$
\begin{aligned}
& a^{4} \cdot a^{5}=a^{4 \cdot 5}=a^{20} \\
& n^{3} \cdot n^{2}=n^{3 \cdot 2}=n^{6}
\end{aligned}
$$

2.

$$
\begin{aligned}
& p^{2} \cdot m^{3}=p^{2+3}=p^{5} \\
& a^{3} \cdot b^{1}=a^{3+1}=a^{4}
\end{aligned}
$$

Select Yes or No to indicate whether the expression simplifies to \mathbf{n}^{10}.
A. $\quad \frac{n^{15}}{n^{5}}$

B. $n^{2} \cdot n^{5}$

Ores Ono
C. $\left(n^{4}\right)^{3} \cdot n^{-2}$

Ores Ono
D. $\frac{1}{n^{-4} \cdot n^{-6}}$

Ores Ono

Select Yes or No to indicate whether the expression simplifies to y^{-4}.
A. $\quad\left(y^{-4}\right)^{2} \cdot y^{4}$
Ores Ono
B. $\frac{1}{y^{-3} \cdot y^{-1}}$

Ores Ono
C. $y^{2} \cdot y^{-6}$

Ores Ono
D. $\quad \frac{y^{-9}}{y^{5}}$

Ores Ono

Describe the error made in simplifying exponential expressions.

1. $\left(n^{-4}\right)^{2} \cdot n^{4}=n^{-4+2} \cdot n^{4}$

$$
\begin{aligned}
& =n^{-2+4} \\
& =n^{2}
\end{aligned}
$$

2. $\frac{\mathrm{p}^{-3}}{\mathrm{p}^{-2}}=\mathrm{p}^{5}$

$$
\frac{q^{-2}}{q^{-3}}=q^{5}
$$

Select Yes or No to indicate whether the expression simplifies to z^{2}.
A. $\mathbf{z}^{\mathbf{1}} \cdot \mathbf{z}^{\mathbf{1}}$
Ores Ono
B. $\frac{z^{-2} \cdot z^{-1}}{z^{-3} \cdot z^{-2}}$
Ores Ono
C. $\frac{z^{-5}}{z^{3}}$
Ores Ono
D. $\left(z^{2}\right)^{2} \cdot z^{-2}$
Ores Ono

Select Yes or No to indicate whether the expression simplifies to \mathbf{a}^{12}.
A. $\quad a^{4} \cdot a^{8}$
Ores

B. $\quad \frac{1}{a^{-11} \cdot a^{-1}}$

Ores Ono
C. $\left(a^{7}\right)^{2} \cdot a^{-2}$

Ores

D. $\quad \frac{a^{12}}{a^{-2}}$

Ores Ono

