An **inference from a data sample** is a generalization about a **characteristic** of all the members based on the **results** of a smaller **random sample**.

A school cafeteria surveyed 100 random students out of 1,000 students regarding their lunch preferences. The results are provided.

Chicken	Burritos	Pizza	Hamburgers
9	21	47	23

Inferences for 1,000 students

- About half of the students (470) like pizza.
- About the same number of students like burritos and hamburgers.
- About two times more students like pizza than hamburgers.
- Chicken is the least liked food.

Not an inference about all 1,000 students

Nine students like chicken.

Zoo keepers gave a questionnaire to 125 random visitors about which zoo exhibit they liked the most.

Is the inference drawn from the data sample correct? Explain.

Exhibit	Number of visitors who prefer this exhibit	About the same nur mammal exhibits.	nber of visito <mark>Yes</mark>	rs liked the reptile and the <mark>No</mark>
Reptiles	25			
Mammals	26	Birds and reptiles ha	d the least fo	avorite exhibits.
Birds	18		les	Νο
Elephants	45			
Amphibians	11			

Which inference <u>cannot</u> be drawn from the data sample? Explain.

- A The reptile exhibit is close to the bird exhibit.
- B The elephant exhibit is the most popular one.

In your own words, what is an inference about a data sample?

We will draw inferences using data samples.

- 1 Refer to the data sample results.
- 2 Draw inferences. (box)

The School Activities Committee gave a questionnaire to 100 random 7th graders about which style of music they like the most.

Note: 100 students were surveyed out of 1,000 total students.

Favorite Style of Music	Number of Votes
Rock	34
Electronic Dance Music (EDM)	10
Рор	18
Hip-hop	25
Rap	13

1a.	About one-third of all the students like rock.	Yes	No
1b.	Only 28 students out of the entire school like EDM and Pop.	Yes	No
1c.	About 2.5 times more students like hip-hop than EDM.	Yes	No
1d.	Pop is almost as popular as rap.	Yes	No

We will draw inferences using data samples.

- 1 Refer to the data sample results.
- 2 Draw inferences. (box)

The Physical Education Department for Delta MS gave a survey to 100 random 7th graders about which is their favorite sport.

Note: 100 students were surveyed out of 1,000 total students.

Favorite Sport	Number of Votes
Tennis	17
Basketball	22
Soccer	35
Swimming	15
Baseball	11

2a.	About 170 7 th graders like tennis.	Yes	No
2b.	Tennis and swimming were the least favorite sports for all students.	Yes	No
2c.	26 students in the entire 7 th grade like swimming or baseball.	Yes	No
2d.	About 260 7 th graders like swimming or baseball.	Yes	No

1b. In the whole neighborhood, the number of pet owners having 3 pets is probably the same as those having 4 pets. **Yes**

Concept Closure

Write an inference about all the nearby pet owners that can be made from the data sample.

Write an inference for the neighborhood that cannot be made from the data sample.

Summary Closure

What did you learn today about drawing inferences using data samples?

dataworks ©2017 All rights reserved.

- 1 Refer to the data sample results.
- 2 Draw inferences. (box)

A theater surveyed 100 randomly selected teens movie goers to rate a new movie from 1 to 5.

Rating	Number of Votes
1 (poor)	28
2 (not very good)	31
3 (good)	22
4 (better than good)	12
5 (excellent)	7

1a.	Of all the teenagers who watched the movie, 4 times as many probably would give a poor rating rather than an excellent rating.	Yes	No
1b.	Nearby theaters would probably have 4 times as many poor ratings than excellent ratings from teenagers.	Yes	No
1c.	Nearby theaters would probably have more excellent ratings than poor ratings.	Yes	No
1 Re 2 Ai	efer to the data sample results. nswer the question.		

2. Write an inference that can be drawn from the data sample.

Listening

Listen carefully to the inferences from the data sample. Answer Yes or No.

A Sports Club asks 100 randomly selected members how many miles they run a day. The club has 1,000 members all together.

Number of Miles	Number of Votes
2	18
3	12
4	51
5	9
6	10
1a. Y	es No
1b. Y	es No
1c. Y	es No

Yes

No

2. Write an inference that can be made from the data sample.

1**d**.

3. Write an inference that <u>cannot</u> be drawn from the data sample.

Compare the data samples.

Thirty-four randomly selected students at two different high schools were asked about how many servings of vegetables they eat every day.

- 1c. The number of students who eat 1 or two vegetable servings a day is the same for both high schools. **Yes**
- 1d.More students eat 5 vegetable servings in High School 2 than High
School 1.YesNo
- 2. Write an inference that can be made from both data samples.

3. Write an inference that cannot be made from both data samples.

1a.

1b.

Periodic Review 3

Compare the data samples.

One hundred random students from two different middle schools were selected to answer the question how many siblings they have.

Middle School #1

Number of Siblings	Number of students
0	5
1	38
2	12
3	25
4	20

Middle School #2

Number of Siblings	Number of students
0	11
1	28
2	22
3	17
4	22

1a.	Fewer students have no siblings for Middle School #2 than for Middle School #1.	Yes	No
1b.	More students have 3 and 4 siblings in Middle School #1 for than Middle School 2.	Yes	No
1 c .	The students in Middle School #1 have better grades than the students in Middle School #2 because they have more siblings to study with.	Yes	No

2. Write an inference that can be made from both data samples.

3. Write an inference that cannot be made from both data samples.

