Acceleration is the **rate of change of speed**, how fast an object **changes speed** in a **given period of time**.

Acceleration can be positive (speeding up) or negative (slowing down, deceleration).

Read the acceleration.

Car A. 18 mph/s Car B. 31 km/hr/s

Which bowling ball has the greater acceleration? Explain.

Which object has the least acceleration? Explain.

Which object has the greatest acceleration? Explain.

Acceleration is calculated as

Mr. Sanchez is driving his car. He accelerates from 50 mph to 70 mph in 10 seconds. Calculate the acceleration.

Acceleration (a) =
$$\frac{70 \text{ mph} - 50 \text{ mph}}{10 \text{ seconds}} = \frac{20 \text{ mph}}{10 \text{ seconds}} = 2 \text{ mph/second}$$

The car's speed is increasing 2 mph each second.

CFU

Mr. Sanchez slows from 70 mph to 50 mph. What is his **change in speed**? Explain.

- A 20 mph
- **B** 50 mph
- C -20 mph

Acceleration is calculated as

1. A person walking starts at 0 m/s and after 6 seconds is traveling at 5 m/s. What is the acceleration of the walker? Explain.

2. A car speeds up from 22 m/s to 26 m/s in 2 seconds. What is the average acceleration of the car? Explain

Acceleration can be shown in a table.

Mr. Sanchez is driving his car. He **accelerates** from **50 mph** to **70 mph** in **10 seconds**. Show the change in a table.

Seconds	Acceleration	Speed
0 (start)		50 mph
1	2 mph/sec	52 mph
2	2 mph/sec	54 mph
3	2 mph/sec	56 mph
4	2 mph/sec	58 mph
5	2 mph/sec	60 mph
6	2 mph/sec	62 mph
7	2 mph/sec	64 mph
8	2 mph/sec	66 mph
9	2 mph/sec	68 mph
10	2 mph/sec	70 mph

What is the speed and acceleration 6 seconds after Mr. Sanchez starts to speed up?

- 1 Analyze the table.
- 2 Calculate the speed. (write)
 Hint: the acceleration shows the increase in speed during each second.
- 3 Explain.

You get on your bike next to a tree. You pedal hard and increase your speed **4 m/s each second** for 5 seconds. Complete the Bicycle Speed column.

Time	Acceleration (change of speed each second)	Bicycle Speed	Explanation
start		0 m/s	Bicycle is at rest
1	4 m/s²	4 m/s	The speed increases 4 m/s each second.
2	4 m/s²	8 m/s	The speed increases 4 m/s each second.
3	4 m/s²		
4	4 m/s²		
5	4 m/s ²		

Skill Closure

- 1 Analyze the table.
- 2 Calculate the speed. (write)
 Hint: the acceleration shows the increase in speed during each second.
- 3 Explain.

Your dad gets a new car. He steps on the gas and accelerates quickly up to 60 mph. It takes 5 seconds. That means the car goes 12 mph per second. Complete the Vehicle Speed column.

Time	Acceleration (change of speed each second)	Vehicle Speed	Explanation
start		0 mph/s	Car is at full stop or at rest.
1	12 mph/s	12 mph/s	The speed increases 12 mph each second.
2	12 mph/s	24 mph/s	The speed increases 12 mph each second.
3	12 mph/s		
4	12 mph/s		
5	12 mph/s		

Concept Closure

Write an explanation.

John is entered in a 10K running race. When the starter's gun sounds, John accelerates quickly to get into the lead. He goes 20 meters in 5 seconds. Phil says John's rate of acceleration is 5 m/s. Do you agree with Phil? Why or why not?

Summary Closure

What did you learn today about describing acceleration?

Word Bank

acceleration deceleration change of speed change of time m/sec/sec m/s²